Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.392
Filtrar
1.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467757

RESUMO

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Assuntos
Eicosanoides , Lipólise , Lipólise/fisiologia , Azeite de Oliva , Ácido Araquidônico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipases/metabolismo
2.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447580

RESUMO

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Criança , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lisossomos/metabolismo , Fosfolipases/metabolismo , Glicerofosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
3.
J Biol Chem ; 300(3): 105763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367671

RESUMO

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.


Assuntos
Receptores ErbB , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ligantes , Mutação , Fosfolipases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Domínios Proteicos/genética , Células CHO , Animais , Cricetinae , Humanos , Glioblastoma/genética
4.
J Cell Mol Med ; 28(4): e18139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334198

RESUMO

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Assuntos
Biflavonoides , Nucleotídeos Cíclicos , Fosfolipases , Humanos , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Proteína Quinase C/metabolismo , Fosforilação , Colágeno/metabolismo
5.
Biochem Biophys Res Commun ; 702: 149618, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340658

RESUMO

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Assuntos
Queratinócitos , Ácido gama-Linolênico , Humanos , Ácido gama-Linolênico/metabolismo , Esterificação , Epiderme/metabolismo , Ceramidas/metabolismo , Ácidos Graxos/metabolismo , Ácido Linoleico/metabolismo , Aciltransferases/metabolismo , Fosfolipases/metabolismo
6.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38238601

RESUMO

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Glicerilfosforilcolina , Fosfolipases , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas , Músculo Esquelético/metabolismo , Fosfolipases/metabolismo , Glicerilfosforilcolina/metabolismo
8.
Int Immunopharmacol ; 126: 111254, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995571

RESUMO

Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Toxoplasma/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Ativação de Plaquetas , Toxoplasmose/tratamento farmacológico , Proteínas de Choque Térmico HSP70/metabolismo , Fígado/metabolismo , Fosfolipases/metabolismo
9.
Eur Heart J ; 45(4): 268-283, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38036416

RESUMO

BACKGROUND AND AIMS: Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS: The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS: The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cß/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS: Macrophage P2Y6R regulates phospholipase Cß/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.


Assuntos
Aterosclerose , Células Espumosas , Receptores Purinérgicos P2 , Humanos , Camundongos , Animais , Células Espumosas/metabolismo , Células Espumosas/patologia , Cálcio/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacologia , Proteômica , Tiamina Pirofosfato/metabolismo , Tiamina Pirofosfato/farmacologia , Aterosclerose/genética , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Camundongos Knockout , Fosfolipases/metabolismo , Fosfolipases/farmacologia
10.
Br J Pharmacol ; 181(5): 712-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37766498

RESUMO

BACKGROUND AND PURPOSE: Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH: Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS: DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION: DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.


Assuntos
Leucina Encefalina-2-Alanina , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Leucina Encefalina-2-Alanina/farmacologia , Lisossomos/metabolismo , Fosfolipases/metabolismo , Receptores Opioides delta/metabolismo , Recuperação de Função Fisiológica , Sirtuína 1/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38151329

RESUMO

The synapse is the communication unit of the brain, linking billions of neurons through trillions of synaptic connections. The lipid landscape of the synaptic membrane underpins neurotransmitter release through the exocytic fusion of neurotransmitter-containing vesicles, endocytic recycling of these synaptic vesicles, and the postsynaptic response following binding of the neurotransmitter to specialized receptors. How the connected brain can learn and acquire memories through synaptic plasticity is unresolved. Phospholipases, and especially the phospholipase A1 isoform DDHD2, have recently been shown to play a critical role in memory acquisition through the generation of saturated free fatty acids such as myristic and palmitic acids. This emerging synaptic plasticity pathway suggests that phospholipases cannot only respond to synaptic activity by altering the phospholipid landscape but also contribute to the establishment of long-term memories in our brain.


Assuntos
Fosfolipases , Membranas Sinápticas , Membranas Sinápticas/metabolismo , Fosfolipases/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Neurotransmissores/metabolismo , Plasticidade Neuronal
12.
Front Cell Infect Microbiol ; 13: 997245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089812

RESUMO

Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Fosfolipases/metabolismo , Mitofagia , Fosfatidilgliceróis/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/metabolismo , Parasitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo
13.
Cells ; 12(24)2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38132129

RESUMO

Mammalian egg activation at fertilization is triggered by a long-lasting series of increases in cytosolic Ca2+ concentration. These Ca2+ oscillations are due to the production of InsP3 within the egg and the subsequent release of Ca2+ from the endoplasmic reticulum into the cytosol. The generation of InsP3 is initiated by the diffusion of sperm-specific phospholipase Czeta1 (PLCζ) into the egg after gamete fusion. PLCζ enables a positive feedback loop of InsP3 production and Ca2+ release which then stimulates further InsP3 production. Most cytosolic Ca2+ increases in eggs at fertilization involve a fast Ca2+ wave; however, due to the limited diffusion of InsP3, this means that InsP3 must be generated from an intracellular source rather than at the plasma membrane. All mammalian eggs studied generated Ca2+ oscillations in response to PLCζ, but the sensitivity of eggs to PLCζ and to some other stimuli varies between species. This is illustrated by the finding that incubation in Sr2+ medium stimulates Ca2+ oscillations in mouse and rat eggs but not eggs from other mammalian species. This difference appears to be due to the sensitivity of the type 1 InsP3 receptor (IP3R1). I suggest that ATP production from mitochondria modulates the sensitivity of the IP3R1 in a manner that could account for the differential sensitivity of eggs to stimuli that generate Ca2+ oscillations.


Assuntos
Sinalização do Cálcio , Fosfolipases , Masculino , Camundongos , Ratos , Animais , Fosfolipases/metabolismo , Cálcio/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Mamíferos/metabolismo , Trifosfato de Adenosina/metabolismo
14.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38118441

RESUMO

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Assuntos
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipases , Chaetomium/enzimologia , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipases/química , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Domínios Proteicos , Simulação de Dinâmica Molecular , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Ativação Enzimática
15.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953590

RESUMO

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Assuntos
Encefalomielite Autoimune Experimental , Fosfolipases , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Proteína Proteolipídica de Mielina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Semaforina-3A , Receptores Acoplados a Proteínas G/metabolismo
16.
Arthritis Res Ther ; 25(1): 200, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840148

RESUMO

BACKGROUND: In systemic lupus erythematosus (SLE), autoreactive B cells are thought to develop by-passing immune checkpoints and contribute to its pathogenesis. Toll-like receptor (TLR) 7 and 9 signaling have been implicated in their development and differentiation. Although some B cell subpopulations such as T-bet + double negative 2 (DN2) cells have been identified as autoreactive in the past few years, because the upregulated surface markers of those cells are not exclusive to them, it is still challenging to specifically target autoreactive B cells in SLE patients. METHODS: Our preliminary expression analysis revealed that phospholipase D4 (PLD4) is exclusively expressed in plasmacytoid dendritic cells (pDCs) and B cells in peripheral blood mononuclear cells (PBMCs) samples. Monoclonal antibodies against human PLD4 were generated, and flow cytometry analyses were conducted for PBMCs from 23 healthy donors (HDs) and 40 patients with SLE. In vitro cell culture was also performed to study the conditions that induce PLD4 in B cells from HDs. Finally, recombinant antibodies were synthesized from subpopulations of PLD4 + B cells from a patient with SLE, and their antinuclear activity was measured through enzyme-linked immunosorbent assay. RESULTS: pDCs from both groups showed comparable frequency of surface PLD4 expression. PLD4 + B cells accounted for only a few percent of HD B cells, whereas they were significantly expanded in patients with SLE (2.1% ± 0.4% vs. 10.8% ± 1.2%, P < 0.005). A subpopulation within PLD4 + B cells whose cell size was comparable to CD38 + CD43 + plasmablasts was defined as "PLD4 + blasts," and their frequencies were significantly correlated with those of plasmablasts (P < 0.005). PLD4 + blasts phenotypically overlapped with double negative 2 (DN2) cells, and, in line with this, their frequencies were significantly correlated with several clinical markers of SLE. In vitro assay using healthy PBMCs demonstrated that TLR7 or TLR9 stimulation was sufficient to induce PLD4 on the surface of the B cells. Finally, two out of three recombinant antibodies synthesized from PLD4 + blasts showed antinuclear activity. CONCLUSION: PLD4 + B cells, especially "blastic" ones, are likely autoreactive B cells undergoing TLR stimulation. Therefore, PLD4 is a promising target marker in SLE treatment.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Humanos , Linfócitos B/metabolismo , Leucócitos Mononucleares/metabolismo , Fosfolipases/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
17.
J Lipid Res ; 64(11): 100457, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832604

RESUMO

Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.


Assuntos
Lipólise , Humanos , Lipase/genética , Lipase/metabolismo , Neurônios/metabolismo , Paraplegia , Fosfolipases/metabolismo , Triglicerídeos/metabolismo
18.
mSphere ; 8(5): e0037423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754547

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is widely known for infecting patients with underlying conditions. This species often survives antibiotic therapy by forming biofilms, in which the cells produce a protective extracellular matrix. P. aeruginosa also produces virulence factors that enhance its ability to cause disease. One signaling pathway that influences virulence is the nitrogen-related phosphotransferase system (Nitro-PTS), which consists of an initial phosphotransferase, PtsP, a phosphocarrier, PtsO, and a terminal phosphate receptor, PtsN. The physiological role of the Nitro-PTS in P. aeruginosa is poorly understood. However, PtsN, when deprived of its upstream phosphotransfer proteins, has an antagonistic effect on biofilm formation. We thus conducted a transposon mutagenesis screen in an unphosphorylated-PtsN (i.e., ∆ptsP) background to identify downstream proteins with unacknowledged roles in PtsN-mediated biofilm suppression. We found an unstudied gene, PA14_04030, whose disruption restored biofilm production. This gene encodes a predicted phospholipase with signature alpha/beta hydrolase folds and a lipase signature motif with an active-site Ser residue. Hence, we renamed the gene bipL, for biofilm-impacting phospholipase. Deletion of bipL in a ∆ptsP background increased biofilm formation, supporting the idea that BipL is responsible for reducing biofilm formation in strains with unphosphorylated PtsN. Moreover, substituting the putative catalytic Ser for Ala phenocopied bipL deletion, indicating that this residue is important for the biofilm-suppressive activity of BipL in vivo. As our preliminary data suggest that BipL is a lipase, we performed lipidomics to detect changes in the lipid profile due to bipL deletion and found changes in some lipid species. IMPORTANCE Biofilm formation by bacteria occurs when cells secrete an extracellular matrix that holds them together and shields them from environmental insults. Biofilms of bacterial opportunistic human pathogens such as Pseudomonas aeruginosa pose a substantial challenge to clinical antimicrobial therapy. Hence, a more complete knowledge about the bacterial factors that influence and regulate production of the biofilm matrix is one key to formulate more effective therapeutic strategies. In this study, we screen for factors that are important for reducing biofilm matrix production in certain genetic backgrounds. We unexpectedly found a gene encoding a putative lipase enzyme and showed that its predicted catalytic site is important for its ability to reduce biofilm formation. Our findings suggest that lipase enzymes have previously uncharacterized functions in biofilm matrix regulation.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Pseudomonas aeruginosa , Humanos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipase/genética , Lipase/metabolismo , Fosfotransferases/genética , Fosfolipases/metabolismo , Lipídeos
19.
Gut Microbes ; 15(1): 2241204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37526354

RESUMO

Vibrio cholerae utilizes the Type VI secretion system (T6SS) to gain an advantage in interbacterial competition by delivering anti-prokaryotic effectors in a contact-dependent manner. However, the impact of T6SS and its secreted effectors on physiological behavior remains poorly understood. In this study, we present Tle1Vc, a phospholipase effector in atypical pathogenic V. cholerae E1 that is secreted by T6SS via its interaction with VgrG1E1. Tle1Vc contains a DUF2235 domain and belongs to the Tle1 (type VI lipase effector) family. Bacterial toxicity assays, lipase activity assays and site-directed mutagenesis revealed that Tle1Vc possessed phospholipase A1 activity and phospholipase A2 activity, and that Tle1Vc-induced toxicity required a serine residue (S356) and two aspartic acid residues (D417 and D496). Cells intoxication with Tle1Vc lead to membrane depolarization and alter membrane permeability. Tli1tox-, a cognate immunity protein, directly interacts with Tle1Vc to neutralize its toxicity. Moreover, Tle1Vc can kill multiple microorganisms by T6SS and promote in vivo fitness of V. cholerae through mediating antibacterial activity. Tle1Vc induces bacterial motility by increasing the expression of flagellar-related genes independently of functional T6SS and the tit-for-tat (TFT) response, where Pseudomonas aeruginosa uses its T6SS-H1 cluster to counterattack other offensive attackers. Our study also demonstrated that the physical puncture of E1 T6SS can induce a moderate TFT response, which is essential to the Tle1Vc-mediated strong TFT response, maximizing effector functions. Overall, our study characterized the antibacterial mechanism of phospholipase effector Tle1Vc and its multiple physiological significance.


Assuntos
Microbioma Gastrointestinal , Vibrio cholerae , Virulência , Fosfolipases/genética , Fosfolipases/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipase/genética , Lipase/metabolismo , Antibacterianos/metabolismo , Expressão Gênica
20.
Proc Natl Acad Sci U S A ; 120(30): e2302546120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463202

RESUMO

The outer membrane of Gram-negative bacteria is unique in both structure and function. The surface-exposed outer leaflet is composed of lipopolysaccharide, while the inner leaflet is composed of glycerophospholipids. This lipid asymmetry creates mechanical strength, lowers membrane permeability, and is necessary for virulence in many pathogens. Glycerophospholipids that mislocalize to the outer leaflet are removed by the Mla pathway, which consists of the outer membrane channel MlaA, the periplasmic lipid carrier MlaC, and the inner membrane transporter MlaBDEF. The opportunistic pathogen Pseudomonas aeruginosa has two proteins of the MlaA family: PA2800 and PA3239. Here, we show that PA2800 is part of a canonical Mla pathway, while PA3239 functions with the putative lipase PA3238. While loss of either pathway individually has little to no effect on outer membrane integrity, loss of both pathways weakens the outer membrane permeability barrier and increases production of the secondary metabolite pyocyanin. We propose that mislocalized glycerophospholipids are removed from the outer leaflet by PA3239 (renamed MlaZ), transferred to PA3238 (renamed MlaY), and degraded. This pathway streamlines recycling of glycerophospholipid degradation products by removing glycerophospholipids from the outer leaflet prior to degradation.


Assuntos
Lipídeos de Membrana , Pseudomonas aeruginosa , Lipídeos de Membrana/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transporte Biológico , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Glicerofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...